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A low-resolution shape of a molecule in solution may be deduced from

measured small-angle X-ray scattering I(q) data by exploiting a Hankel

transform relation between the coefficients of a multipole expansion of the

scattered amplitude and corresponding coefficients of the electron density. In

the past, the radial part of the Hankel transform has been evaluated with the aid

of a truncated series expansion of a spherical Bessel function. It is shown that

series truncation may be avoided by analytically performing the radial integral

over an entire Bessel function. The angular part of the integral involving a

spherical harmonic kernel is performed by quadrature. Such a calculation also

allows a convenient incorporation of a molecular hydration shell of constant

density intermediate between that of the protein and the solvent. Within this

framework, we determine the multipole coefficients of the shape function by

optimization of the agreement with experimental data by simulated annealing.

1. Introduction

Two of the techniques that have given us the greatest

knowledge of the high-resolution three-dimensional structure

of proteins are X-ray crystallography (Drenth, 1994) and

NMR (Wüthrich, 1986). However, these methods have their

limitations: it is often difficult to grow crystals of high-

molecular-weight assemblies suitable for crystallography and

the application of NMR is generally limited to small proteins

of molecular weight less than about 30 kDa.

Most cellular functions are performed by macromolecular

complexes, whose structures are determined by their largely

aqueous environments. Techniques capable of determining

such structures in solution are therefore very much in demand.

Small-angle X-ray and neutron scattering (SAXS and SANS)

are two techniques [for a review, see Petoukhov & Svergun

(2007)] that provide low-resolution information about the

structures of molecules and molecular complexes over a broad

range of conditions and particle sizes.

These techniques measure angularly averaged scattered

intensities (of X-rays and neutrons) as a function of the

magnitude of the momentum transfer, q. Such I(q) curves are

strongly peaked in the forward-scattering direction (q = 0).

However, important information about the scattering parti-

cles, such as their molecular mass, radius of gyration, hydra-

tion volume and maximum diameter, may be derived directly

from the shape of the I(q) distribution (Guinier & Fournet,

1955).

More recently, largely due to the work of Stuhrmann

(1970a,b) and Svergun & Stuhrmann (1991), it has been

realized that, remarkably, it may be possible to determine not

only directionally independent quantities, such as the above,

but even the three-dimensional shape of a dissolved particle

directly from measured SAXS data. It was shown that the

decomposition of the experimental I(q) curve into an expan-

sion of the scattered amplitudes in an angular momentum

basis enables the determination of an angular momentum

representation of a molecular shape function Fð!Þ, where !
represents, say, a set of polar (�) and azimuthal (’) angles. The

limitations of such a single-valued function in representing

molecular shapes which may contain complicated features

such as multiple subparticles, internal voids etc. has led to the

development of techniques that represent a complicated

particle as a set of dummy atoms or residues on a three-

dimensional grid, whose configuration is determined from the

experimental data by global optimization techniques, such as

genetic algorithms (Chacón et al., 1998) and simulated

annealing (Svergun, 1999).

Nevertheless, methods that determine the multipole coef-

ficients of a molecular shape function are mathematically

elegant, and remain useful for compact particles of simpler

shape. The development of spherical harmonic representa-

tions of more complex shapes (Morris et al., 2005) also

suggests the possibility of the extension of such methods to

such shapes, which may include protein binding pockets.

Stuhrmann (1970a) showed that the coefficients AlmðqÞ of a

spherical harmonic expansion of the scattered amplitudes may

be related to those, f
ðuÞ
lm , of the uth power of Fð!Þ via a Hankel

transform relating the electron density of the molecule and the

scattered amplitudes. The radial integrals involved in evalu-

ating the Hankel functions are made tractable by assuming a

series representation of the spherical Bessel functions in the

Hankel transform. The truncation of this series after a finite

number of terms necessarily limits the applicability of the



theory to relatively low values of the momentum transfer q.

With the availability of experimental SAXS measurements at

higher values of q, it may be desirable to overcome this

limitation. We demonstrate in this paper how this may be done

in theory by analytic integrations over the entire spherical

Bessel functions. We also examine the limits of q beyond

which the SAXS intensities calculated by the two approaches

deviate. We show that the analytical structure of the radial

integrals allows the convenient inclusion in the theory of a

hydration shell with a uniform density around a protein

molecule of unknown shape in solution. We also demonstrate

the use of such an algorithm for the determination of a

molecular shape function from both simulated and measured

SAXS data.

2. Determination of a molecular shape function
directly from SAXS data

The starting point of the existing theory of the shape function

(see e.g. Svergun & Stuhrmann, 1991) is a representation of

both the molecular electron density �ðpÞðrÞ and scattered X-ray

amplitudes AðpÞðqÞ as the multipole expansions

�ðpÞðrÞ ¼
P
L

�ðpÞL ðrÞYLð!Þ; ð1Þ

where the position vector r may be specified in terms of polar

coordinates ðr; !Þ, and

AðpÞðqÞ ¼
P
L

A
ðpÞ
L ðqÞYLð�Þ; ð2Þ

where the photon’s momentum transfer vector q is assumed to

have a polar coordinate representation ðq;�Þ, L (= {lm}) is a

combined index that specifies both azimuthal and magnetic

quantum numbers, and YL is a spherical harmonic.

Scattering theory suggests that these two sets of expansion

coefficients are related by the Hankel transform,

A
ðpÞ
L ðqÞ ¼ ilð2=�Þ1=2

R1
0

�ðpÞL ðrÞjlðqrÞr2 dr: ð3Þ

A shape function Fð!Þ may be defined by approximating the

particle electron density by

�ðpÞðrÞ ¼

(
1 if 0 � r � Fð!Þ
0 if r � Fð!Þ

; ð4Þ

where

Fð!Þ ¼
P
L

fLYLð!Þ ð5Þ

may be expanded in terms of (complex) multipole coefficients

fL. Then, writing

�ðpÞL ðrÞ ¼
R
�ðpÞðrÞY�Lð!Þ d! ð6Þ

with the shape-function representation [equation (4)] of the

electron density, and the representation of the spherical Bessel

functions in equation (3) by the power series

jlðqrÞ ¼
P1
s¼0

dlsðqrÞ
lþ2s

ð7Þ

with coefficients

dls ¼ ð�1Þs=f2ss!½2ðl þ sÞ þ 1�!!g; ð8Þ

the integral in equation (3) may be performed analytically to

yield

A
ðpÞ
L ðqÞ ¼ ilð2=�Þ1=2 P1

s¼0

�
dlsf
ðlþ2sþ3Þ
L =ðl þ 2sþ 3Þ

�
qlþ2s; ð9Þ

where

f
ðuÞ
L ¼

R
½Fðr̂rÞ�uY�Lðr̂rÞ dr̂r ð10Þ

are the multipole coefficients of the uth power of the shape

function.

Svergun & Stuhrmann (1991) evaluated only the coeffi-

cients with the lowest power, u = 1, by numerical integration.

Those of higher powers u were computed from these by a

recursion relation. The SASHA program of Svergun and

co-workers (available from http://www.embl-hamburg.de/

ExternalInfo/Research/Sax/software.html) calculates the

coefficients fL of the molecular shape function Fð!Þ from an

experimental I(q) SAXS curve by optimizing its agreement

with a simulated SAXS spectrum,

IðqÞ ¼ ½1=ð4�Þ1=2
�
P
L

jALðqÞj
2; ð11Þ

treating the fL coefficients as variable parameters.1

3. Exact analytic evaluation of the multipole
coefficients of the scattered amplitudes

In the following, we show that any approximation of the radial

integrals due to a truncation of the Bessel-function power-

series expansion above may be circumvented by performing

analytical integrals over entire spherical Bessel functions. This

is made possible by using the representation of these functions

in terms of trigonometric functions. First, note that using

equations (4) to (6), equation (3) may be written

A
ðpÞ
L ðqÞ ¼ il

ð2=�Þ1=2
R

Rl½Fð!Þ�Y
�
Lð!Þ d!; ð12Þ

where

Rl½Fð!Þ� ¼
RFð!Þ
0

jlðqrÞr2 dr: ð13Þ

Using the representations (Abramovitz & Stegun, 1974) of

spherical Bessel functions

jnðzÞ ¼ fnðzÞ sin zþ ð�1Þnþ1f�n�1ðzÞ cos z; ð14Þ

where the coefficients fnðzÞ may be found from the recursion

relations

fn�1ðzÞ þ fnþ1ðzÞ ¼ ð2nþ 1Þz�1fnðzÞ; ðn ¼ 0;�1;�2; . . .Þ

ð15Þ
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1 The factor of 1=ð4�Þ1=2 in equation (11) is unimportant in practical
applications due to a need to scale experiment to theory.



with initial values

f0ðzÞ ¼ z�1; f1ðzÞ ¼ z�2; ð16Þ

the Bessel functions may be written in terms of trigonometric

functions. The lowest-order spherical Bessel functions take the

form

j0ðzÞ ¼ ðsin zÞ=z;

j1ðzÞ ¼ ðsin zÞ=z3
� ðcos zÞ=z;

j2ðzÞ ¼
�
3=z3 � 1=z

�
sin z� ð3=z3Þ cos z;

. . . ; ð17Þ

which allow a convenient analytic evaluation of the radial

integrals [equation (13)] to infinite order in the power-series

expansion [equation (7)]. Up to angular momentum quantum

number l = 8, these are

R0½Fð!Þ� ¼ ð1=q3Þ½sinðqFÞ � qF cosðqFÞ�; ð18Þ

R1½Fð!Þ� ¼ �ði=q3
Þ½�2þ 2 cosðqFÞ þ qF sinðqFÞ�; ð19Þ

R2½Fð!Þ� ¼ �ð1=q3
Þ½qF cosðqFÞ � 4 sinðqFÞ þ 3SiðqFÞ�; ð20Þ

R3½Fð!Þ� ¼ fi=½ðqFÞq3�g½8qF � 15 sinðqFÞ þ 7qF cosðqFÞ

þ ðqFÞ
2 sinðqFÞ�; ð21Þ

R4½Fð!Þ� ¼ �f1=½2ðqFÞ2q3�g½�105qF cosðqFÞ

� 15ðqFÞ
2SiðqFÞ þ 105 sinðqFÞ

� 22ðqFÞ2 sinðqFÞ þ 2ðqFÞ3 cosðqFÞ�; ð22Þ

R5½Fð!Þ� ¼ �fi=½ðqFÞ
3
q3�g½�16ðqFÞ

3
� 315qF cosðqFÞ

� 105ðqFÞ
2 sinðqFÞ þ 315 sinðqFÞ þ 16ðqFÞ

þ 16ðqFÞ
3 cosðqFÞ þ ðqFÞ

4 sinðqFÞ�; ð23Þ

R6½Fð!Þ� ¼ f1=½12ðqFÞ
4
q3
�g½�20790qF cosðqFÞ

þ 1575ðqFÞ3 cosðqFÞ � 105ðqFÞ4SiðqFÞ

þ 20790 sinðqFÞ þ 176ðqFÞ
4 sinðqFÞ

� 8ðqFÞ5 cosðqFÞ�; ð24Þ

R7½Fð!Þ� ¼ �fi=½ðqFÞ
5
q3
�g½128ðqFÞ

5

þ 135135ðqFÞ cosðqFÞ þ 58905ðqFÞ
2 sinðqFÞ

� 13860ðqFÞ3 cosðqFÞ � 1890ðqFÞ4 sinðqFÞ

� 135135 sinðqFÞ þ 145ðqFÞ5 cosðqFÞ

þ 5ðqFÞ
6 sinðqFÞ� ð25Þ

and

R8½Fð!Þ� ¼ �f1=½16ðqFÞ
6
q3
�g½�5405400ðqFÞ cosðqFÞ

� 2432430ðqFÞ2 sinðqFÞ þ 630630ðqFÞ3 cosðqFÞ

þ 100485ðqFÞ
4 sinðqFÞ � 10395ðqFÞ

5 cosðqFÞ

� 315ðqFÞ
6SiðqFÞ þ 5405400 sinðqFÞ

� 592ðqFÞ
6
þ 16ðqFÞ

7 cosðqFÞ�; ð26Þ

where Si(z) stands for the sine integral

SiðzÞ ¼
Rz
0

ðsin tÞ=t dt; ð27Þ

which may be conveniently evaluated by the algorithm

developed by MacLeod (1996). Using these closed-form

expressions for the radial integrals Rl½Fð!Þ� allows the

evaluation of the multipole coefficients of the scattered

amplitudes by a single angular integral of the form of equation

(12), a task which may be performed rapidly and accurately

using Gaussian quadrature.

4. Effects of the solvent and hydration shell

It is relatively straightforward within this formalism to model

also the effect of a solvent containing the protein molecules, as

well as a thin hydration shell around each molecule. We

assume a model in which the protein electron density is

assumed to be a constant, �p, inside the molecular envelope

specified by Fð!Þ. If �s represents the mean solvent density, the

calculated SAXS signal I(q) from protein molecules in the

solution is the angular average

IcalcðqÞ ¼ hjð�p � �sÞA
ðpÞ
ðqÞj2i�

¼ ½1=ð4�Þ1=2
�
P
L

jð�p � �sÞA
ðpÞ
L j

2; ð28Þ

where the second equality follows from the orthonormality of

spherical harmonics with respect to integration over the solid

angle � (Svergun et al., 1995).

If the protein molecules are surrounded by a hydration shell

of density �h, intermediate between that of the protein and

solvent, this expression is modified to

IcalcðqÞ ¼ hjð�p � �sÞA
ðpÞ
ðqÞ þ ð�h � �sÞA

ðhÞ
ðqÞj2i�

¼ ½1=ð4�Þ1=2
�
P
L

jð�p � �sÞA
ðpÞ
L þ ð�h � �sÞA

ðhÞ
L j

2;

ð29Þ

where AðhÞðqÞ is the amplitude of the scattering from the

hydration shell and A
ðhÞ
L is its multipole coefficient.

In order to include the protein and its hydration shell within

the envelope defined by the molecular shape function Fð!Þ,
the scattered amplitude from the protein may be evaluated

from

A
ðpÞ
L ðqÞ ¼ il

ð2=�Þ1=2
R

Rl½Fð!Þ ��=��Y�Lð!Þ d!; ð30Þ

with the upper limit on the radial integral [equation (13)] now

Fð!Þ ��=� rather than Fð!Þ, where � is the diameter of the

hydration shell (assumed to be 3 Å) and � is the cosine of the

angle between the radius vector and the normal to the outer
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surface of the hydration shell. The scattered amplitude from

the hydration shell is defined by

A
ðhÞ
L ðqÞ ¼ ilð2=�Þ1=2

R
fRl½Fð!Þ� � Rl½Fð!Þ ��=��gY�Lð!Þ d!:

ð31Þ

Together with the analytical radial integrals [equations (18) to

(27)], the last three equations enable the calculation of the

SAXS intensity from a model of the protein of electron

density �p, surrounded by a hydration shell of electron density

�h of thickness 3 Å and immersed in a solvent of electron

density �s, as implemented in the CRYSOL program of

Svergun et al. (1995). This differs from the model assumed by

the SASHA program, in which the density of the hydration

shell reduces linearly from its inner surface to its outer surface

(Svergun, 1997).

We next proceed to demonstrate the use of our algorithm

for two tasks. In x5 we calculate the SAXS spectrum expected

for a given molecular shape function, as characterized by a

given set of multiple coefficients, by our method and by the

program of Svergun and co-workers. We demonstrate that the

two methods of calculation agree well in this case up to a value

of q of about 0.2 Å�1, beyond which the results of the two

programs differ somewhat. Finally, a little beyond q = 0.6 Å�1,

the term-by-term integration of a truncated spherical Bessel

function power series yields a divergent SAXS signal, whereas

our analytical radial integration over entire Bessel functions

appears to produce convergent values (as judged by the

smoothness of the simulated curve). In x6, we show how our

approach allows a recovery of a molecular shape function

from a SAXS spectrum.

5. Simulation of a SAXS spectrum for a given molecular
shape function

As a first test of our theory, we compared SAXS spectra

calculated by our method and by the power-series expansion

method for a molecular shape function specified by different

sets of multipole coefficients flm from a file sent to us by Dr

Dmitri Svergun. Since the quantity Fð!Þ involves the sum of

terms of the form flmYlmð!Þ þ fl�mYl�mð!Þ, and since

Yl�mð!Þ ¼ ð�1ÞmY�lmð!Þ, the reality of Fð!Þ is ensured by the

choice of ð�1Þmfl�m ¼ f �lm, so only the coefficients flm with

positive m need be specified. Table 1 lists the first 15 of these

independent (complex) coefficients for values of l up to 4.

The calculations were performed both by a routine sent to

us by Dr Svergun (part of the SASHA program) in which the

radial integral [equation (3)] is performed by the power-series

expansion method of x2, and by the analytical radial integra-

tion method described in x3. The spectra calculated by the two

methods were scaled to coincide at q = 0. Both calculations

assumed a 3 Å-thick hydration shell (although calculated on

slightly different models, as described in the previous section).

Fig. 1 compares the SAXS spectra calculated from the flm

coefficients in Table 1 for l values up to a maximum lmax = 2,

and for a range of q from 0 to 0.2 Å�1. The spectra calculated

by the two methods are essentially indistinguishable in this

case.

The same holds when lmax = 4 for the same range of q, as

illustrated in Fig. 2.

The situation is different when the results of the two

methods of calculation are compared in the range of q from

0.2 to 0.8 Å�1. For lmax = 2 (Fig. 3), small deviations in the

results of the two methods are noticeable in the range from q =

0.3 Å�1 onwards, while for lmax = 4 (Fig. 4), deviations are

noticeable closer to q = 0.2 Å�1. For lmax = 2, the power-series

expansion method is completely divergent by about q =

0.8 Å�1, while for lmax = 4 the divergence is apparent by about

q = 0.7 Å�1; the results of our method do not show such a

divergence in either case.

6. Calculation of the molecular shape function from
experimental SAXS data

The use of our analytical expressions for the radial integrals

involved in the evaluation of the scattered amplitudes from

the molecules and their hydration shells allows us to find

information about both the shape of a dissolved molecule as

well as its hydration shell by optimizing the agreement of the

calculated SAXS spectrum with measured SAXS data Iexp(q)

(say) by minimizing a function of the form

�2 ¼
P

q

jIcalcðqÞ � IexpðqÞj
2=�2

q ð32Þ

[where �q is the estimated error in the measurement of Iexp(q)]

with respect to the unknown parameters fL specifying the

molecular shape, and to the parameter �, specifying the

thickness of the hydration shell. For the mean densities of the

protein molecule, hydration shell and solvent density we

assumed the accepted approximate values of 0.40, 0.36 and

0.33 e Å�3, respectively, and we assumed the thickness of the

hydration shell, �, to be 3 Å. The optimization was performed

by means of a simulated annealing algorithm (Kirkpatrick et

al., 1983), starting with random values of the real and
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Table 1
Values of the complex coefficients flm of the multipole expansion of the
shape function F(!).

The complex coefficients are listed for different values of l and non-negative m
up to l = 4 and were used for the calculations of the SAXS spectra of Figs. 1–4.

l m flm (real) flm (imaginary)

0 0 2.529218 0.000000
1 0 �0.376664 0.000000
1 1 0.159247 �0.129320
2 0 0.294870 0.000000
2 1 0.976603 �0.016234
2 2 0.204422 0.017612
3 0 0.063160 0.000000
3 1 0.092240 0.054767
3 2 0.121282 0.194941
3 3 �0.050339 0.250137
4 0 0.030176 0.000000
4 1 0.054744 �0.012466
4 2 0.167895 �0.081864
4 3 0.119843 �0.003168
4 4 0.135816 �0.110773



imaginary components of the complex quantities fL within

reasonable physical ranges.

7. Comparison of calculated molecular shapes with
those from SASHA

Figs. 3 and 4 suggest that the SAXS intensities calculated by

the SASHA program and ours may differ significantly, espe-

cially for higher values of q. SASHA is widely used for the

calculation of molecular shapes from SAXS spectra. There-

fore it is of interest to compare the molecular shapes calcu-

lated from the same SAXS spectra by SASHA and by our

method. For our test data, we took the experimental SAXS

data (in the file ‘lyzexp.dat’) for lysozyme distributed as a test

data set for SASHA from Dr Svergun’s web site at http://

www.embl-hamburg.de/ExternalInfo/Research/Sax/software.

html. This data set contained data from very close to q = 0 up

to about q = 0.5 Å�1.

The molecular shape functions calculated by SASHA from

these SAXS data for the ranges (i) q = 0 to 0.25 Å�1 and (ii) q

= 0 to 0.50 Å�1, and displayed using the graphics program

MASSHA (also distributed from the same web site), are

shown in Figs. 5 and 6, respectively.

In both cases, the molecular model was displayed with its

longest axis lengthwise across the page, and the molecular

shape was rotated and translated in order to best fit the model.

The molecular envelope calculated from the smaller data

range was found to fit easily around the backbone trace of the
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Figure 3
As for Fig. 1, except q is in the range 0.2 to 0.8 Å�1. The intensity units
should be multiplied by a factor of 10�2 to make them consistent with the
scale of Fig. 1.

Figure 4
As for Fig. 2, except q is in the range 0.2 to ~0.8 Å�1. The intensity units
should be multiplied by a factor of 10�2 to make them consistent with the
scale of Fig. 2.

Figure 2
As for Fig. 1, except that lmax = 4.

Figure 1
Comparison of SAXS spectra for q in the range 0 to 0.2 Å�1, calculated
from the flm coefficients of a molecular shape function up to lmax = 2 by
radial integrals involving (a) term-by-term integration of a truncated
power-series expansion of spherical Bessel function (dashed red line) and
(b) analytical integration of the entire Bessel functions (solid black line).



molecule from the 2BPU entry in the Protein Data Bank (Fig.

5). However, when the molecular envelope was calculated

from the larger q range, it was impossible to find an orienta-

tion of the envelope to completely cover the molecule (Fig. 6).

We then used instead the theory based on the analytical

radial integrals, as described in x3, to find the optimum values

of the the molecular envelope coefficients flm from the same

experimental data. In this case, the resulting envelopes were

found to completely cover the molecule for both ranges of q,

as may be seen in Figs. 7 and 8.

8. Discussion and conclusions

A major advance in the analysis of SAXS spectra was the

realization that not only traditional spherically averaged

properties of a dissolved molecule, such as its radius of gyra-

tion, may be deduced from a SAXS spectrum, but even the

shape of the molecule (Svergun & Stuhrmann, 1991). This

method of analysis depends on the representation of the

molecule by a shape function characterized by a set of sphe-

rical harmonic expansion coefficients. By comparing SAXS

curves calculated from 25 different proteins with molecular

masses between 10 and 300 kDa, Svergun & Koch (2002)

concluded that data up to a momentum transfer q of 0.7 Å�1

(corresponding to a spatial resolution larger than 2�/q’ 9 Å),

where SAXS curves manifest their greatest variability, are

most sensitive to the molecular shape. Although SAXS curves

show less variability amongst different proteins in such a

range, some information about the overall molecular fold may

be gleaned from data in the range of q between about 0.6 and

1.2 Å�1 (resolution between ~10 and 5 Å). Information about

the secondary structure of proteins may be obtained only from

ranges of q greater than about 1.2 Å�1 (resolutions smaller

than about 5 Å), where SAXS spectra are similar for a wide

range of proteins. [A discussion of the information that can be

obtained from different ranges of q in protein crystallography

has been given by Morris et al. (2004).]

In this paper, we are concerned mainly about the portion of

a SAXS spectrum with the greatest variability amongst

different proteins, namely that with q less than about 0.7 Å�1,

from which information may be deduced about the molecular

shape. Deduction of spherical harmonic expansion coefficients

of the molecular shape function requires the integration of a

radial function with a spherical Bessel function kernel. The

standard method of calculating this integral involves a term-

by-term integration of terms derived from a power-series

expansion of the Bessel function (e.g. Svergun & Stuhrmann,

1991). The necessary truncation of such a series is a potential

source of error, which would be expected to increase with an

increase of the momentum transfer q.
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Figure 5
Molecular shape function of lysozyme calculated via the expansion
coefficients flm of its spherical harmonic expansion by the executable code
SASHA distributed by Svergun and co-workers from the experimental
data file ‘lyzexp.dat’ distributed with the code for the range q = 0 to
0.25 Å�1. The maximum value of l was taken to be lmax = 2. The molecular
envelope is displayed by the graphics program MASSHA, also from the
same web site. The molecular envelope is compared with the backbone
trace of lysozyme from the protein data bank (PDB) entry 2BPU.

Figure 6
As for Fig. 5 except that the molecular shape calculation was from the full
data range q = 0 to 0.5 Å�1.

Figure 7
As for Fig. 5 except that the calculation was performed with the SAXS
intensity simulated with the use of the analytic radial integrals described
in x3.

Figure 8
As for Fig. 6 except that the calculation was performed with the SAXS
intensity simulated with the use of the analytic radial integrals described
in x3.



We show in this paper that truncation of such a series

expansion may be avoided by performing the radial integrals

analytically using the trigonometric representation of the

spherical Bessel function, and then by performing the angular

integrals involving spherical harmonics by quadrature, a

procedure which requires relatively few evaluations of the

angular integrands. Incorporation of different electron densi-

ties of the molecular solvent and hydration shell is also

straightforward with this approach. We suggest that the

proposed method may be capable of recovering low-

resolution molecular shapes from SAXS data of a wider range

of q. Of course, the larger the value of q, the greater is the

contribution from the internal structure of a molecule

(Svergun, 1994), an effect not modelled in the present treat-

ment. Nevertheless, as we point out, there are relatively small,

but noticeable, deviations in calculations of SAXS spectra by

our method and by the prior method even for q values as small

as about 0.2 or 0.3 Å�1. Molecular shapes calculated even

from SAXS data in the range 0 to 0.5 Å�1 by the two methods

appear to be noticeably different.
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